

Final Year Project Showcase Batch-20XX Year 2023

Department: Chemistry					
	Programme: Bechelors in Industrial Chemistry (BSIC)				
1	Project Idea				
I	Synthesis Of Curcumin-Capped Bimetallic Nanoparticles and their Applications,				
	Process				
2	a) Cucrumin-capped monometallic nanoparticles were synthesized using chemical reduction				
2	method in which curcumin was used instead of toxic reducing agents.				
	b) Synthesized nanoparticles were characterized using UV-Visible Spectroscopy, Infrared				
	Spectroscopy, Atomic Force Microscopy and Scanning Electron Microscopy.				
3	Outcome				
	Precise-size core-shell Au@Ag nanoparticles were synthesized using environmental friendly reducing agent curcumin.				
	Evidence (Theoretical Basis)				
	Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) also known as				
	diferuloyl methane. It is a bright yellow natural pigment produced from the roots of Curcuma				
	Longa L. and other species (family zingiberaceae). Nanoparticles including, gold, silver, and iron				
	oxide have gained too much attention, due to their extreme importance and usage in medicine				
	and the biomedical field. Therefore, it was necessary to develop green synthesis to minimize the				
	toxic waste from the chemical reduction reaction. Lately, researchers have started to replace toxic reducing agents like sodium borohydride and hydrazine by using curcumin as reducing and				
4	capping agent. Curcmin not only reduce the metal, it also stabilized nanoparticles from				
	coagulation. There are many reported method about synthesis of curcumin mediated metallic				
	nanoparticles however very few studies have been conducted on synthesis of bimetallic				
	nanoparticles by using curcumin instead of commonly used toxic reducing agent. An initiative				
	was taken to synthesize the curcumin coated bimetallic nanoparticles. We started it with				
	synthesis of curcumin coated silver and gold NPs. After the successful result, we synthesized				
	core shell bimetallic NPs. We characterized our sample on FTIR (Fourier-transform infrared), UV-				
	visible spectrophotometer, PDI and AFM. Through the results we have found that BNPs are in range of 80-90nm.				
	Competitive Advantage or Unique Selling Proposition				
5					
5	Coreshell nanoparticles may have many applications. These particles can be used as				
	nanosensors,				
а	Attainment of any SDG (e.g. How it is achieved and why it is necessary for the region)				
	In the proposed study monometallic and bimetallic nanoparticles will be synthesized using				
	environmental friendly flavonoid curcumin instead of toxic chemical reductants. Their applications will be evaluated on the basis of biological assays only.				
	Any Environmental Aspect (e.g. carbon reduction, energy-efficient, etc.)				
	In the proposed study monometallic and bimetallic nanoparticles will be synthesized using				
b	environmental friendly flavonoid curcumin instead of toxic chemical reductants. Their				
	applications will be evaluated on the basis of biological assays only.				

NED University of Engineering and Technology

	Target Market.				
6					
	Coreshell bimetallic nanoparticles can be used in pharmaceutical industries as nanosensors.				
	Team Members (Names along with email address)		Syeda Zafirah Masood	l Raza IC-19033	
7			Muhammad Azram Al		
,			Iesha Toheed IC-19036		
			Mohammad Danish A	ziz IC-19059	
8	Supervisor Name (along with email address)		Dr Amtul Qayoom		
10	Pictures (If any)	solution STEP1:	Ag solution Ag solution Ag Nps Formation of Ag Nps Collection of Au/Ag BMNPs Collection of Au/Ag BMNPs		
		1			